
Landlock LSM
Towards unprivileged sandboxing
michael@kinvolk.io

Proposed new LSM by Mickaël Salaün
First RFC March 2016,

Today in iteration v7

"seccomp-object: From attack surface
reduction to sandboxing"

https://lwn.net/Articles/681538/

Goal
"empower any process, including unprivileged ones, to securely
restrict themselves"
Note: current version (Landlock patch v7) requires CAP_SYS_ADMIN

Patchset v7
a minimum viable product
a stackable LSM

using eBPF

(new pogram type BPF_PROG_TYPE_LANDLOCK_RULE)

focused on filesystem access control
source: https://landlock.io/talks/2017-09-14_landlock-lss.pdf

https://landlock.io/talks/2017-09-14_landlock-lss.pdf

Why eBPF
very limited kernel attack surface
strict rules for policies (enforced through eBPF verifier)

Demo
./landlock landlock1_kern.o /usr/bin/bash

Events
Landlock groups 33 filesystem-related LSM hooks into
LANDLOCK_SUBTYPE_EVENT_FS
an event "describes the kind of kernel object for which a rule will
be triggered to allow or deny an action"

Actions
events further distinguished by action type, e.g.
LANDLOCK_ACTION_FS_WRITE
or subevent specific arg, e.g. ioctl request

How it works
linux:security_init: Landlock LSM hooks are set up
user application loads Landlock program(s) with bpf(2) and
applies with seccomp(2)
prog is triggered for events matching the program subtype
prog allows (ret == 0) or denies access (ret != 0)

Applying a rule

where prog_fd is the fd of the eBPF Landlock program

prctl(PR_SET_NO_NEW_PRIVS, 1, 0, 0, 0);
seccomp(SECCOMP_PREPEND_LANDLOCK_RULE, 0, &prog_fd);

Writing a rule requires ...
a subtype
a handler program

The subtype
SEC("subtype")
static const union bpf_prog_subtype _subtype = {
 .landlock_rule = {
 .abi = 1,
 .event = LANDLOCK_SUBTYPE_EVENT_FS,
 .ability = LANDLOCK_SUBTYPE_ABILITY_DEBUG,
 }
};

The handler program
SEC("landlock1")
static int landlock_fs_prog1(struct landlock_context *ctx)
{
 char fmt_event_fs[] = "received event LANDLOCK_SUBTYPE_EVENT_FS\n";
 char fmt_event_unknown[] = "received unknown event type\n";

 if (ctx->event & LANDLOCK_SUBTYPE_EVENT_FS) {
 bpf_trace_printk(fmt_event_fs, sizeof(fmt_event_fs));
 } else {
 // should not happen
 bpf_trace_printk(fmt_event_unknown, sizeof(fmt_event_unknown));
 }
 return 0; // allow all
}

Development
LKML
Patchset is based on net-next
https://github.com/landlock-lsm/linux

https://github.com/landlock-lsm/linux

Roadmap
cgroups handling
new eBPF map type for filesystem-related checks (map fsview)
unprivileged mode

source: https://landlock.io/talks/2017-09-14_landlock-lss.pdf

https://landlock.io/talks/2017-09-14_landlock-lss.pdf

Thank you
Questions?

Slides can be found here soon:

michael@kinvolk.io

https://speakerdeck.com/schu

https://speakerdeck.com/schu

Resources

https://landlock.io/
https://landlock.io/linux-doc/landlock-v7/security/landlock/index.html
https://landlock.io/talks/2017-09-14_landlock-lss.pdf
https://landlock.io/talks/2017-06-21_landlock-linuxkit-sig.pdf
https://lkml.org/lkml/2017/8/20/192
https://man.openbsd.org/pledge.2
https://www.kernel.org/doc/Documentation/security/LSM.txt

https://landlock.io/
https://landlock.io/linux-doc/landlock-v7/security/landlock/index.html
https://landlock.io/talks/2017-09-14_landlock-lss.pdf
https://landlock.io/talks/2017-06-21_landlock-linuxkit-sig.pdf
https://lkml.org/lkml/2017/8/20/192
https://man.openbsd.org/pledge.2
https://www.kernel.org/doc/Documentation/security/LSM.txt

